Marcos Cerón, Eduardo García, Paulo Lins

University of Rochester

Applied Reading Group, 2020

Income Volatility

Introduction

Outline

1 Income Volatility

Introduction

- Data
- Measuring Regional Income Volatility
- Measuring Regional Tariff Reduction
- Main Econometric Specification and Identification

2 Occupational Mobility

- Introduction
- Data and Measuring Regional Occupational Mobility
- Main Econometric Specification

Income Volatility

Introduction

Trade Liberalizations and Labor Markets

- Most trade liberalization analyses have focused on its impact on average earnings.
- Its effect on income inequality has also been studied (though considerably less).
- Little is known about its impact on **income volatility**.

Income Volatility

L Introduction

Why is it Important?

Definition [Income Volatility]: Variance of the **unpredictable component** of my income.

Example: Suppose,

•
$$y_t = y_t^{\text{Det.}} + \mu_t$$

• $\mu_t \sim \text{i.i.d.}(0, \sigma^2)$

For risk-averse agents,

$$\uparrow \sigma^2 \Rightarrow \downarrow U(y_t)$$

Income Volatility

Introduction

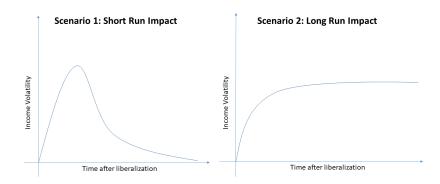
What is known about Income Volatility and Trade?

Contemporaneous effects:

Mexico [Krebs (2010; REST)] and the US [Krishna (2014; RES)]:

 $\downarrow \mathsf{Tariffs}_t \Rightarrow \uparrow \mathsf{Inc. Vol}_t$

Channels:


- Capital and labor reallocation across firms/sectors;
- \downarrow Tariffs $\Rightarrow \uparrow$ Exposure to **external shocks**.

Long-run effects of trade liberalization on Income Volatility?

Income Volatility

Introduction

Long vs. Short Run (Possible Scenarios)

Income Volatility

Introduction

Brazilian Trade Liberalization (1990-95)

Ideal to study trade policy changes' effects on labor markets:

- Unilateral and unexpected,
- Large decline in average tariffs $(30.5\% \rightarrow 12.8\%)$,
- Steadiness in the tariffs post-1995. Average tariffs
- Heterogeneity in tariff cuts across industries. " Tariff cuts per sector
- Previous "tariffication":
 - Non-tariff trade barriers were replaced by tariffs.

Income Volatility

Introduction

Impulse Response Function

Main econometric specification:

$$\hat{\sigma}_{r,t}^{2} - \hat{\sigma}_{r,1991}^{2} = \theta_{t} RTR_{r} + \Gamma' Z_{r,t} + \gamma_{t} (\hat{\sigma}_{r,1990}^{2} - \hat{\sigma}_{r,1986}^{2}) + \alpha_{s,t} + \varepsilon_{r,t}$$

for each $t \in \{1992, 1993 \cdots 2017\}$.

Notation:

- $\hat{\sigma}_{r,t}^2$: **Income volatility** in region *r* at time *t*;
- RTR_r: Regional tariff reduction (1990-95);
- Z_{r,t}: Regional controls;

•
$$\hat{\sigma}_{r,1990}^2 - \hat{\sigma}_{r,1986}^2$$
: **Pre-trend** control;

• $\alpha_{s,t}$: State time-varying fixed effects.

Income Volatility

└_ Data

Outline

1 Income Volatility

- Introduction
- Data
- Measuring Regional Income Volatility
- Measuring Regional Tariff Reduction
- Main Econometric Specification and Identification
- 2 Occupational Mobility
 - Introduction
 - Data and Measuring Regional Occupational Mobility
 - Main Econometric Specification

Income Volatility

L_Data

Relação Anual de Informações Sociais (RAIS)

- (+) Annual administrative dataset (1986-2018) [Brazilian Ministry of Labor].
- ► (+) Job records including:
 - Worker and establishment identifiers,
 - Workers: Earnings, age, tenure, education, gender, occupation...

Firms: Geographic location, sector and size.

- (+) Firms fined for not reporting RAIS. Workers need it for government benefits.
- (+) RAIS is a census.
- ▶ (-) No information on informal sector [50% of labor force].

Income Volatility

Measuring Regional Income Volatility

Outline

1 Income Volatility

- Introduction
- Data

Measuring Regional Income Volatility

- Measuring Regional Tariff Reduction
- Main Econometric Specification and Identification

2 Occupational Mobility

- Introduction
- Data and Measuring Regional Occupational Mobility
- Main Econometric Specification

Income Volatility

Measuring Regional Income Volatility

How are regions defined?

- Micro-regions defined by the Brazilian Statistical Agency (IBGE);
- Groups economically integrated contiguous municipalities;
- 475 micro-regions;
- ► Local labor market ⇒ 3.4% lived and worked in different micro-regions.

Income Volatility

Measuring Regional Income Volatility

Measuring Income Volatility

We assume the following Mincer equation:

$$\log y_{i,j,r,t} = \alpha_{j,t} + \beta'_{t,r} \cdot x_{i,j,t} + u_{i,j,r,t}$$

i: individual; *j*: firm; *r*: region; and *t*: period.

Notation:

- ► x_{i,j,t}: Worker observable characteristics,
- ▶ $\beta'_{t,r}$: Time-varying region-varying coefficients,
- *α_{j,t}*: Firm time-varying firm fixed effects,
- $u_{i,j,r,t}$: Stochastic term.

Income Volatility

Measuring Regional Income Volatility

Measuring Income Volatility - Krebs (2010; REST)

The stochastic term is further decomposed:

$$u_{i,j,r,t} = \omega_{i,j,r,t} + \eta_{i,j,r,t}$$

1 Persistent component: Random walk:

$$\cdot \omega_{i,j,r,t} = \omega_{i,j,r,t-1} + \varepsilon_{i,j,r,t} \\ \cdot \varepsilon_{i,j,r,t} \sim \mathcal{N}(0, \sigma_{r,t}^2)$$

Income Process Literature: Guvenan (2009); Storesletten (2004) [$\hat{\rho} \approx 1$].

2 Transitory component: Isolates measurement error: • $\eta_{i,j,r,t} \sim \mathcal{N}(0, \tilde{\sigma}_{r,t}^2)$.

Income Volatility

Measuring Regional Income Volatility

Measuring Income Volatility - Krebs (2010; REST)

The stochastic term is further decomposed:

$$u_{i,j,r,t} = \omega_{i,j,r,t} + \eta_{i,j,r,t}$$

1 Persistent component: Random walk:

$$\cdot \omega_{i,j,r,t} = \omega_{i,j,r,t-1} + \varepsilon_{i,j,r,t} \\ \cdot \varepsilon_{i,j,r,t} \sim \mathcal{N}(0, \sigma_{r,t}^2)$$

Income Process Literature: Guvenan (2009); Storesletten (2004) [$\hat{\rho} \approx 1$].

2 Transitory component: Isolates measurement error: • $\eta_{i,j,r,t} \sim \mathcal{N}(0, \tilde{\sigma}_{r,t}^2)$.

Income Volatility

Leasuring Regional Income Volatility

Estimation – GMM

Thus,

 $\hat{\sigma}_{r,t}^2$: estimate of **income volatility** in region r at time t.

Notice that,

$$\Delta_{s} u_{i,j,r,t} = u_{i,j,r,t+s} - u_{i,j,r,t} = \varepsilon_{i,j,r,t+1} + \varepsilon_{i,j,r,t+2} + \cdots + \varepsilon_{i,j,r,t+s} + \eta_{i,j,r,t+s} - \eta_{i,j,r,t}$$

Moment conditions are:

$$\Rightarrow \operatorname{Var}[\Delta_{s} u_{i,j,r,t}] = \sigma_{r,t+1}^{2} + \sigma_{r,t+2}^{2} + \cdots + \sigma_{r,t+s}^{2} + \tilde{\sigma}_{r,t}^{2} + \tilde{\sigma}_{r,t+s}^{2}^{2}$$

Income Volatility

└─ Measuring Regional Tariff Reduction

Outline

1 Income Volatility

- Introduction
- Data
- Measuring Regional Income Volatility

Measuring Regional Tariff Reduction

Main Econometric Specification and Identification

2 Occupational Mobility

- Introduction
- Data and Measuring Regional Occupational Mobility
- Main Econometric Specification

Income Volatility

└─ Measuring Regional Tariff Reduction

Regional Tariff Reduction (RTR_r)

Following Kovak (2013; AER):

$$RTR_r = -\sum_k eta_{r,k} [\ln(1 + au_{k,1995}) - \ln(1 + au_{k,1990})]$$

where
$$\beta_{r,k} = \frac{\lambda_{r,k} \cdot \frac{1}{\phi_k}}{\sum_i \lambda_{r,i} \cdot \frac{1}{\phi_i}}$$

▶ Papers

Notation:

- ▶ k: industry,
- λ_{r,k}: industry k's share of regional labor (pre-liber.)
 [Source: 1991 Census],
- φ_k: industry k's cost share of non-labor factors (pre-liber.)
 [Source: 1990 National Accounts (IBGE)].

Income Volatility

Leasuring Regional Tariff Reduction

Regional Tariff Reduction – Dix-Carneiro (2017; AER)

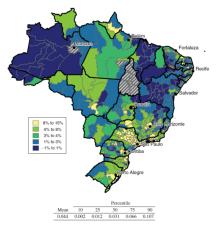


FIGURE 2. REGIONAL TARIFF REDUCTIONS

Income Volatility

Main Econometric Specification and Identification

Outline

1 Income Volatility

- Introduction
- Data
- Measuring Regional Income Volatility
- Measuring Regional Tariff Reduction
- Main Econometric Specification and Identification
- 2 Occupational Mobility
 - Introduction
 - Data and Measuring Regional Occupational Mobility
 - Main Econometric Specification

Income Volatility

Main Econometric Specification and Identification

Impulse Response Function

Main econometric specification:

$$\hat{\sigma}_{r,t}^{2} - \hat{\sigma}_{r,1991}^{2} = \theta_{t} RTR_{r} + \Gamma' Z_{r,t} + \gamma_{t} (\hat{\sigma}_{r,1990}^{2} - \hat{\sigma}_{r,1986}^{2}) + \alpha_{s,t} + \varepsilon_{r,t}$$

for each $t \in \{1992, 1993 \cdots 2017\}$.

Notation:

- $\hat{\sigma}_{r,t}^2$: **Income volatility** in region *r* at time *t*;
- RTR_r: Regional tariff reduction (1990-95);
- Z_{r,t}: Regional controls;

•
$$\hat{\sigma}_{r,1990}^2 - \hat{\sigma}_{r,1986}^2$$
: **Pre-trend** control;

• $\alpha_{s,t}$: State time-varying fixed effects.

Income Volatility

Main Econometric Specification and Identification

Possible Confounders

Tariff cuts' exogeneity:

- ▶ Highly correlated [-0.9] with the pre-lib. tariff levels;
- Pre-lib. tariff levels date from 1957 (Kume 2003).

Potential Confounder:

- Drive Income volatility across regions within a state;
- Correlated RTR_r;
- **Not captured** by Pre-Trend control.

Nonetheless, control for other post-liberalization shocks:

Global commodity price boom.

- Cccupational Mobility
 - Introduction

Outline

1 Income Volatility

- Introduction
- Data
- Measuring Regional Income Volatility
- Measuring Regional Tariff Reduction
- Main Econometric Specification and Identification

2 Occupational Mobility

Introduction

- Data and Measuring Regional Occupational Mobility
- Main Econometric Specification

└─Occupational Mobility

Introduction

How does Regional Occupational Mobility Respond?

Do the effects of trade liberalization on occ. mobility fade or persist?

- Cccupational Mobility
 - Data and Measuring Regional Occupational Mobility

Outline

1 Income Volatility

- Introduction
- Data
- Measuring Regional Income Volatility
- Measuring Regional Tariff Reduction
- Main Econometric Specification and Identification

2 Occupational Mobility

- Introduction
- Data and Measuring Regional Occupational Mobility
- Main Econometric Specification

└─ Occupational Mobility

LData and Measuring Regional Occupational Mobility

Classificação Brasileira de Ocupações (CBO)

- Brazil's occupational classification system (Ministry of Labor).
- ▶ Three editions: 1994, 2002 and 2010.
- **Describes** for each occupation (4-digit CIIU):
 - Activities performed,
 - Skills and educational level required,
 - Resources, equipment and utensils employed,
 - 6-digit CIIU code of occupations that compose it.

Cccupational Mobility

Data and Measuring Regional Occupational Mobility

CBO Example – Electrical/Electronic Engineers

CIIU Code: 2143 Description:

- Execute electrical, electronic and telecommunications services.
- Install, administer and inspect systems and equipment,
- Study electrical, electronic and telecommunication processes...

Formation and Experience:

- Formation in Electric, electronic or telecommunications engineering.
- On average, 4 years of experience for engineers...

Resources:

Internet access, e-mail...

Occupations:

▶ 2143-05 Electrical engineer; 2143-10 Electronic Engineer...

└─Occupational Mobility

Data and Measuring Regional Occupational Mobility

Measuring Regional Occupational Mobility

Extensive margin:

• $m_{r,t}$: % of workers changing occupation in region r at time t.

Coarse measure \Rightarrow not all occupation switches are the same.

Notion of Distance:

 $\mathsf{Baker} \to \mathsf{Chef}$

 \neq

 $\mathsf{Banker} \longrightarrow \mathsf{Construction} \ \mathsf{Worker}.$

└─Occupational Mobility

LData and Measuring Regional Occupational Mobility

Distance between Occupations – Gothman et al. (2010)

Occupation O is **characterized** by vector:

$$q_O = (q_{O,1}; q_{O,2}; \cdots q_{O,19})$$

Where,

 $q_{O,i}$: **Intensity** of task "i" in occupation "O" (% of workers in "O" performing task "i") \triangleright Example

Definition:

$$\mathsf{Dist}_{O,O'} = 1 - \mathsf{Ang}_{O,O'} = 1 - \frac{\sum_{i} q_{O,i} q_{O',i}}{\left(\sum_{j} q_{O,j}^2 \times \sum_{k} q_{O,k}^2\right)^{1/2}}$$

└─Occupational Mobility

Data and Measuring Regional Occupational Mobility

Adaptation using the Brazilian CBO

Electrical/Electronic Engineers: CIIU Code: 2143

Description:

- Activity 1
- Activity 2
- Activity 3
- Activity 4
- Activity 5

└─Occupational Mobility

LData and Measuring Regional Occupational Mobility

Adaptation using the Brazilian CBO

Electrical/Electronic Engineers: CIIU Code: 2143

Description:

- Activity 1
- Activity 2
- Activity 3
- Activity 4
- Activity 5

Task 1Task 2Task 3

Classification via text analysis [Mihayvol (2019; ISCO)].

└─Occupational Mobility

LData and Measuring Regional Occupational Mobility

Distance between Occupation (using CBO)

1 Redefine intensities:

 $\tilde{q}_{O,i} = \%$ of **activities** in task "i" for occupation "O".

 $\tilde{q}_O = (3/5, 1/5, 1/5)$

2 Adjust distances accordingly,

$$\widetilde{\mathsf{Dist}}_{O,O'} = 1 - \frac{\sum_{i} \tilde{q}_{O,i} \tilde{q}_{O',i}}{\left(\sum_{j} \tilde{q}_{O,j}^2 \times \sum_{k} \tilde{q}_{O,k}^2\right)^{1/2}}$$

3 Important: Check $Dist_{O,O'}$ and $Dist_{O,O'}$ in GQCS or other.

- └─ Occupational Mobility
 - Main Econometric Specification

Outline

1 Income Volatility

- Introduction
- Data
- Measuring Regional Income Volatility
- Measuring Regional Tariff Reduction
- Main Econometric Specification and Identification

2 Occupational Mobility

- Introduction
- Data and Measuring Regional Occupational Mobility
- Main Econometric Specification

└─Occupational Mobility

Main Econometric Specification

Regional Response of Occupational Mobility

1 Definition: $m_{r,t}$: Average $Dist_{O,O'}$ in region r at time t.

2 Impulse Response Function:

 $m_{r,t} - m_{r,1991} = \theta_t RTR_r + \Gamma' Z_{r,t} + \gamma_t (m_{r,1990} - m_{r,1986}) + \alpha_{s,t} + \varepsilon_{r,t}$

for each $t \in \{1992, 1993 \cdots 2002\}$.

Notation:

- RTR_r: Regional tariff reduction,
- θ_t : Parameter of interest.

Conclusions and Steps to Follow

Conclusions and Steps to Follow

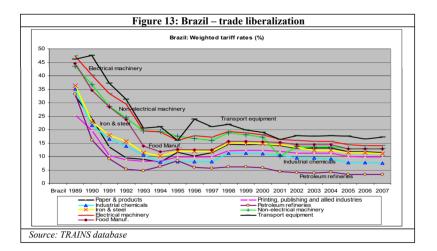
Conclusions:

- Brazil's liberalization: ideal to study long-run effects on labor markets.
- Long-run effects on Income Volatility and Occup. Mobility are yet to be understood.

Steps to follow:

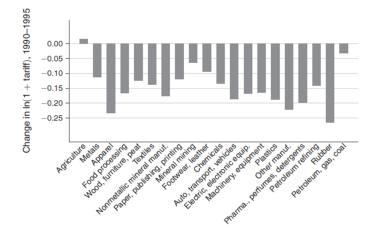
- **1** Calculate $\hat{\sigma}_{r,t}^2$ and $m_{r,t}$ from data.
- 2 Estimate the Impulse Response Functions,
- 3 Study mechanisms.

Other Ideas:


• Monetize
$$\hat{\sigma}_{r,t}^2$$
 and $m_{r,t}$.

Conclusions and Steps to Follow

Thank you!


Conclusions and Steps to Follow

Average tariffs in Brazil – Chandra (2009; WB)

Conclusions and Steps to Follow

Tariff Changes per Industry – Kume (2003)

Conclusions and Steps to Follow

Example – German Qualification and Career Survey

			Example	
	Mean	Standard Deviation	Teacher (%)	Baker (%)
Analytical tasks:	55.02	49.75	63.7	32.4
Research, evaluate, or				
measure	25.11	43.37	34.0	13.6
Design, plan, or sketch	10.21	30.28	17.6	3.6
Correct texts or data	23.85	42.62	39.6	6.4
Calculate or do				
bookkeeping	26.02	43.87	11.3	22.5
Program	8.35	27.66	8.4	.4
Execute laws or interpret				
rules	7.85	26.89	17.2	.8
Analytical is main task	31.56	46.48	15.9	13.1
No. observations	52,718		1,067	472

Summary Statistics of Task Data

SOURCE. - Qualification and Career Surveys, 1979, 1985, 1991/92, 1997/98.

Conclusions and Steps to Follow

Papers that use RTR_r

- Kovak (2013; AER);
- Dix-Carneiro and Kovak (2017; AER);
- Dix-Carneiro and Kovak (2019; IER);
- ▶ Dix-Carneiro, Soares and Ulyssea (2018; AEJ).

Tariff measures per industry: Kume, Piani and Souze (2003; IPEA).

Regional Tariff Reduction